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Note 

An Algorithm for the Solution 
of the Eigenvalue SchrGdinger Equation 

1. The one-dimensional radial eigenvalue Schrodinger equation may be 
written as 

4’“(r) =f(r) y(r) 
O<r<co, 

(1) 

(2) 

where f(r) = U(r) - E, E is a real number denoting the energy and U(r) = 
V(r) + 2(1+ 1)/r’ is an effective potential for which 

U(r) 3 0 as r--,+co, 

along with the boundary conditions, 

lim y(r)=0 and lim y(r) = 0. (3) 
r-0 r-m 

Such solutions exist for negative discrete eigenvalues of E,. In this work the poten- 
tial U(r) is a real function. 

More recently Papageorgious and Raptis [l] developed a new technique for 
determining the eigenvalues. They introduced a new function named impedance 
which is well known in transmission line theory. The properties of the new function 
are relevant to the problem in quantum mechanics. 

2. Following the usual procedure of the piecewise perturbation numerical 
method [2], the domain [r,, rk] is divided by the mesh points: 

r07 rI I r2j . . . . rk 

into k arbitrary intervals: 

Cr,, r 1 n+l 3 n=O, 1, 2, 3, . . . . k- 1. (4) 

In addition we denote Ar, = r,, + , - r,,. 
Within each of these elementary intervals, we choose a polynomial un(r) which 

approximates the true potential u(r) over the interval. This piecewise polynomial 
approximating curve is usually called a “reference potential.” 
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The solution for this problem then satisfies the equation: 

ylY(r) + (E- Un) (y,(r) = 01, 

r,, < r < r,, + I 3 n= 1, 2, 3, . . . . k, 
(5) 

where U,, = U(r, + h/2), which is the well-known Cauchy problem. 
The analytical solutions of (5) are known by the perturbative theory as zeroth 

order-solutions ye(r). However, if we expand the solution y(r) in a perturbation 
series as 

y(r) = ye(r) + Ay, (r) f A2y2(r) + ... 

rE CrnT r,,+ll, O<A<l, 
(6) 

where ye(r) is the zeroth-order solution, y,(r) is the first-order correction, y*(r) is 
the second-order correction, and so on. 

If the series (6) are cut at the second-order terms and i taken to be i, then the 
solution and its first derivative of the problem (l)-(2) can be approximated at the 
mesh points by the expressions 

Y(r n+ ,) = IX,W,,) - $(dr,) i(drJl y(rJ + dr,XddrJ y’(drJ 

y’(r,+ ,I = ~5 dr,X2(dr,) Ar,) + CX,(dr,J + SVr,) itAr,) .f(~r,L 
(7) 

where: 

X, = cosh(o, dr,) 

X, = sinh(w,, dr,)/(o, dr,) 

C(dr,) = [ U(r, + drJ2) - U(r, - dr,/2)](dr,)* 

i(dr,,) = CX,(dr,,) - X2(~r,)ll(2~, dr,)*. 

Dividing the relations (8) we get, after some algebra, 

(i) case for U,-E30: 

y’(r”+ ‘) 

80: tanh(o, 6) + Cf3~5,6 + Cu2 - UIl((c 6 - = tanNo, ~))l(y’(~,M~,)). 
[8w: 6 - [U, - U,](o, 6 - tanh(w, a)] + 80: 6 tanh(o, 6)( y’(r,)/y(r,))’ 

(ii) case for U,- E ~0: 
(8) 

y’(r,+ 1) -80: Ww, 6) + C%? 6 + Cu2 - u,l(w, 6 - tan(o, ~))l(y’(r,Mrn)). 
n+l)= Y(r [I804 6 - [U, - U,](o, 6 - tan(o, S)] + 8~0: 6 tan(o, 6)( y’(r,)/y(r,)) ’ 

(9) 
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where 

6 = Ar,, U2 = U(r, + Ar,/2), 

We define, now, the function 

U, = U(r, - Ar,/2). 

z(r) = .h’(rMr), (10) 

which is called “the impedance,” where y’(r) = dy(r)/dr and j = fi. 
For reasons of numerical calculations, since y(r) and y’(r) are real functions and 

by letting z(r) = jZ(r), we have 

Z(r) = y’(r)ly(r). (11) 

The function Z(r,+ ,) = y’(r, + I)/y(r, + , ), which can be calculated at the point 
by using the recursion relations (8) and (9), gives useful information about the 

;;h;iics of the problem (l)-(3). 
As described in [l], we consider an intermediate point r‘, and the apply the 

recursion relations (8) and (9). Starting from r. outwards to r,. we calculated Z”(r,,) 
(i.e., the impedance to the left) and starting from rk inwards to rC we calculate 
Z”(r,.) (i.e., the impedance to the right). The eigenvalue is given by 

ZL(r,.) + Z”(r,.) = 0. 

For a trial eigenvalue E we have the value of the function F(E), 

F(E) = Z”(r,.) + ZR(r,.), 

(12) 

(13) 

where the roots of the algebraic equation F(E) = 0 are the eigenvalues. 
In order to calculated ZL(r,.) and ZR(r,) for a given value of E, we have to start 

the integration with the initial values of ZL(r,) and ZR(r,). These values are 
calculated from the equation 

ZL(0) = Y’(OVY(O) (14) 

and, since by definition y(O) = 0, we have ZL(0) = co. 
For numerical reasons we start the ourward integration at r. close to the origin 

and we use Z(r,) equal to a very large number. 
The inward integration is starting from a point rk such that for r > rk the poten- 

tial is negligible. The initial value of rk has been taken from the asymptotic solution 
of y(r) and y’(r). Since 

v(r) = exp( - ar), y’(r)- -flexp(-nr), 

we get Z(r,) % -JiT. 
The intermediate point r, can be taken at any point in the range (ro, rk). 

However, for numerical purposes, we avoid taking values of rC either close to the 



480 PAPAGEORGIOU, RAPTIS, AND SIMOS 

TABLE I 

Absolute Error in Units of lOmy 
(Real Time of Computation in Seconds) Optic Potential 

.i 

/,={ h=$ h=& 

New New New 
SF-PNM method SF-PNM method SF-PNM method 

0 606 387 2 0 0 

(6.6) (1.2) (25.6) (4.1) (102.1) (16ql) 

6 127921 29400 509 117 1 0 
(45.3) (0.8) (184.6) (3.0) (737.5) (12.0) 

12 442048 93022 1845 395 0 
(80.8) (1.3) (324.4) (5.0) (12;o.l) (20.0) 

Note. r0 = 0.0, I, = 2.0, rk = 15, and I= 0. 

ro, because we have very large numbers of Z”(r,.) and ZR(r,.), or close to rk, 
because we have very small numbers of Z”(r,.) and Z”(r,.), resulting in inaccurate 
eigenvalues. 

3. In order to test the validity of the present method we apply it as follows: 

Case 1. We solve the problem (l)-(3) with I= 0, where V(v) is: 

(i) an optical potential: 

V(r) = U,/( 1 + t) - ( Uo/ao) t/( 1 + t)’ 

f = expC(r - &)/aol, 
(15) 

TABLE II 

Absolute Error in Units of 10m8 
(Real Time of Computation in Seconds) Morse Potential (i) 

/.,=a h==$ h=& 

New New New 
i SF-PNM method SF-PNM method SF-PNM method 

0 377387 42739 1512 174 6 0 
(4.3) (0.6) (33.3) U-0) (132.9) (7.6) 

10 2069927 387047 10193 2050 40 8 
(93.1 (0.6) (291.3) (2.2) (1220.3) (8.8) 

18 222420 40897 1164 237 6 2 
(206.0) (1.1) (655.8) (4.4) (2541.6) (17.6) 

Note. r,, = 0.0, r, = 2.0, ri = 10, and I = 0 
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TABLE III 

Absolute Error in Units of 1Om8 
(Real Time of Computation in Seconds) Morse Potential (ii) 

hz+ h=& h=& 

New New New 

.i SF-PNM method SF-PNM method SF-PNM method 

0 573824 734303 23241 3135 90 12 

((4.1) (0.6) (16.4) (2.1) (63.1) (7.7) 

12 27167893 6797535 204000 41158 833 170 
(43.1) (0.6) (190.4) (1.9) (776.8) (7.5) 

24 932187 638940 8288 1674 34 8 
(90.6) (1.0) (331.3) (3.8) (1735.8) (15.2) 

Note. r,=O.O, r,=2.0, r,=lO, and l=O. 

where U,,=5Ofm -‘, R,=7fm, a,=0.6fm-‘; and 

(ii) a Morse potential: 

U(r) = U,t(t - 2) 

t = fw[ao(Ro - r)l, 

where: 

(a) UO= 188.4355k2, a,=0.711248A -I, R,= 1.9975A and 

(b) U, = 605.559/I --‘, a, = 0.988879A -l, R, = 2.40873~’ [S]. 

TABLE IV 

Absolute Error in Units of lo-” 
(Real Time of Computation in Seconds) Morse Potential (i) 

(16) 

h=; 

New 
i SF-PNM method 

h=& 

New 
SF-PNM method 

h=& 

New 
SF-PNM method 

0 3644 391 
(8.3) (1.2) 

8 21607 4031 
(76.6) (1.1) 

16 6270 1144 
(158.3) (1.2) 

14 1 0 
(32.6) (4.1) (129.8) (111) 

103 20 
(292.5) (4.0) (11701.6) (1i.O) 

(5:123) 6 0 
(4.7) (2206.0) (18q8) 

Note. r0 = 0.0, r, = 2.0, rt = 20, and I= 5. 

581,‘88’2-16 
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TABLE V 

Absolute Error in Units of 10m6 
(Real Time of Computation in Seconds) Morse Potential (ii) 

h=Q h=& h=& 

New 

.i SF-PNM method SF-PNM 
New 

method SF-PNM 
New 

method 

0 55233 7260 

(8.5) (1.9) 

10 295383 46733 
(87.2) (1.2) 

22 54376 30184 
(191.2) (1.2) 

229 30 
(32.6) (5.0) 

208 1 419 
(358.2) (4.7) 

414 
(758.8) 

0 0 
(129.9) (21.6) 

8 1 
(1427.7) (18.8) 

2 0 
(3026.4) (18.9) 

Note. r0 = 0.0, r, = 2.0, rk = 20, and I = 5. 

Case II. We solve the problem (l)-(3) with 1= 5, where V(r) is a Morse poten- 
tial of the form (16) with U,, R,, and a, are the same as in Case I. 

The reference eigenvalues computed: (a) for the optical potential from the 
analytic result of Bencze [4]; (b) for the Morse potential and for the Case I from 
the equation 

ek= -D[1-aD-“2(k++)]2; (17) 

(c) for the Morse potential and I = 5, from SFPNM with second correction and 
h = & in (a) and h = & in (b) (we use this method because there are not published 
values from the theoretical calculations (named true values) in this case). 

Eigenvalues E,, obtained on the Micro-Vax at various step sizes h using the pre- 
sent new method and the step function perturbative numerical method (SF-PNM) 
of Adam, Ixaru, and Corciovei [3], are collected in Table I-V. The table entries 
are: 

(a) the values of the absolute error in the calculated eigenvalue 

Aj = IEcomputec~ - Eexactl ; 

(b) the computing time. 

(18) 

It can be seen that the new method is more efficient than the method SF-PNM in 
terms of the accuracy and computing time. 
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